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A B S T R A C T

The paper presents the monocular visual odometry, inertial navigation system and the fusion of both
these localization approaches. The visual odometry algorithm consists of four other algorithms, namely
the camera calibration algorithm, KLT algorithm, algorithm for the estimation of rigid transformation and
RANSAC algorithm. The inertial navigation system is based on a pedometer and digital compass. Both
visual odometry and the inertial navigation system can determine the incremental movements and the
positions of a robot or a pedestrian according to the world coordinate system. In order to get an even more
robust and accurate localization system, the advantages of each mentioned localization approaches were
combined by using the Extended Kalman Filter. The algorithms were fully implemented on a smartphone,
where they were divided into several threads that could be performed simultaneously on multiple
processor cores. The proposed system, which fuses information from the camera and inertial sensors, can
convert the smartphone into a powerful mobile sensor unit or the so-called virtual sensor that returns
relative position in relation to the starting point. This virtual sensor can be used as an advanced sensor
unit on mobile robots or as part of a smartphone application which requires personal navigation system.
The operation of the localization system is proved by experimental results which were obtained by
attaching a smartphone on a pedestrian who walked along the reference trajectory drawn on the floor. In
the experiments the described system showed big potential in many aspects since very good results were
obtained.
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1. Introduction

One of the most important features of all living creatures on
Earth is the ability to determine their own position in the
environment they live in. With the development of new localiza-
tion algorithms and systems, there has been a growing tendency to
enable robots, autonomous mobile systems, and particularly
people who have lost this ability, e.g. due to blindness, to use
this ability.

Recently, a lot of studies have focused on localization in the
indoor environment, since this represents a major challenge,
mainly due to the fact that GPS signals are not available there. As
smartphones have become indispensable accessories of a modern
man, the possibility of using their hardware for the purpose of
indoor localization of persons and autonomous mobile systems has
been studied. Smartphones are equipped with multiple sensors
such as the accelerometer, gyroscope, magnetometer, altimeter,
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camera and multiple communication modules (Bluetooth, WiFi,
NFC, LTE), which enable the implementation of different algo-
rithms for indoor localization [1]. In addition, smartphones contain
increasingly powerful multi-core processors, which allow for the
implementation of more complex algorithms.

The development of new algorithms and systems for localiza-
tion in the indoor environment is especially important due to their
usefulness in many fields. Namely, an algorithm that provides
accurate localization in the indoor environment can be used for
different types of robots, for applications for the blind, for
applications which comprise personal navigation system (PNS)
for guiding [2] in large shopping malls, museums, airports, public
institutions, etc. since people often spend a lot of time finding the
desired location in an unfamiliar environment.

Localization of unmanned ground vehicles and robots in the
indoor environment is already well developed, since they can be
equipped with more powerful hardware and additional sensors,
e.g. LIDAR, depth sensor, stereo camera [3]. In connection with the
LIDAR sensor, especially simultaneous localization and mapping
(SLAM) method [4] has been established, which can also process
the information obtained by the camera. Since the camera is a low
cost and relatively lightweight sensor, its use is becoming more
odometry and inertial navigation system on a smartphone, COMIND
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common for the purpose of localization of unmanned ground and
aerial vehicles.

Currently the most widely used approach to indoor localization
using a smartphone is based on the measurement of the WiFi,
Bluetooth or GSM signal strength [1]. However, because this
approach does not enable high positioning accuracy, new
approaches based on the fusion of several different sensors and
methods are being established. As has been shown in numerous
studies, a great potential lies especially in the methods based on
inertial sensors and camera, as they provide higher accuracy of
localization. High accuracy and robustness of localization can be
achieved through the fusion of different localization approaches
which complement each other. Sirtkaya et al. [5] proposed the
fusion of the information from the camera and inertial sensors by
using the Kalman filter.

When camera is used for the localization purposes, there are
several different methods and algorithms which can determine the
movement of an agent (a vehicle, person, robot) on which the
camera is attached. Among the established methods, here belong
structure from motion (SFM), simultaneous localization and
mapping (SLAM) [4], visual odometry (VO) [6] and image-to-
map matching [7]. SFM and SLAM are considered to be compute-
intensive methods and they also spend a lot of memory, because
they build a 3D map of the environment besides the motion
estimation. The approach with the image-to-map matching
requires extensive image dataset of the indoor environment which
is used for off-line reconstruction (i.e. building a map) presented
with a 3D point cloud. This type of localization also requires a
powerful hardware with a lot of storage [8]. Since visual odometry
estimates only the motion of the camera, it can operate in real time,
even on less powerful hardware. The concept of visual odometry
was established by Nister et al. [9], who introduced the main
concept, which is the basis for the most of the existing visual
odometry algorithms. The term was chosen for its similarity to
wheel odometry since both approaches incrementally estimate the
motion of a vehicle.

In order to obtain an accurate localization technique which
would run in real time on a smartphone, a computational optimal
system based on the use of camera and inertial sensors was built in
this study. The core of the system is visual odometry, which
enables accurate determination of incremental movements of the
smartphone, i.e. a human or a robot on which the smartphone is
attached. Visual odometry is based on the assumption that a
smartphone is fixed on a certain height and at an angle relative to
the floor [10]. This assumption is often true when using a
smartphone on a robot. For determining the movements of (the
blind) persons, a smartphone needs to be fixed to the body. For the
operation of visual odometry, it is necessary to know the
transformation between the camera coordinate system (C.S.)
and the ground C.S., which is obtained by the initial calibration. In
connection with the visual odometry, RANSAC algorithm [9,11] is
also often used, which enables the elimination of the traces of
feature points that represent outliers in the determination of the
rigid motion model.

For the purpose of testing the algorithms, a Galaxy
S4 smartphone based on the operating system Android was used.
In the implementation of the visual odometry, an open-source
library BoofCV [12] that is written in the Java programming
language and combines a multitude of useful functions in the field
of machine vision was used. The visual odometry algorithm is
performed in real time on the smartphone where the speed of
image processing is equal to 10–15 fps. In the application
the images were captured at a resolution of 320 � 240 pixels.
The calibration was also performed on the smartphone by using
the BoofCV library [12].
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As a complementary system of visual odometry, the inertial
navigation system based on three sensors, namely 3-axis
accelerometer, 3-axis gyroscope and 3-axis magnetometer, was
implemented. The inertial navigation system for pedestrians is
basically composed of a digital compass, which is responsible for
determining the absolute heading, and a pedometer, which
determines the length of the travelled path by counting the steps.
Inertial navigation system can also be used on a wheel robot,
whereby double integration of acceleration for determining the
travelled distance is used instead of a pedometer. This approach is
somewhat more susceptible to the errors accumulation but this
can be reduced by considering another localization technique such
as visual or wheel odometry.

Both visual odometry and inertial navigation system have
advantages as well as disadvantages. Both approaches have one
common weakness, namely, they belong to dead reckoning
localization techniques. The phrase dead reckoning means that a
previously determined position is used in the process of
calculating the current position. Consequently, the newly comput-
ed positions contain cumulative errors. With the fusion of both
localization approaches, the size of the accumulated errors can be
reduced and also all other errors that may occur within a particular
system should be eliminated. In order to get a system that would be
as reliable as possible for determining the relative position, the
Extended Kalman Filter (EKF), which enables optimal combining of
information, was used for the fusion purposes.

The advantage of this system is that it is fully implemented on
the smartphone and it does not require additional indoor
infrastructure (e.g. WiFi network) for its operation. The proposed
localization system, which combines information from hardware
sensors (camera and inertial sensors) converts the smartphone
into a powerful mobile sensor unit or the so-called virtual sensor
that returns incremental movements in relation to the starting
point. Therefore, the smartphone just needs to be attached to the
robot and the virtual sensor already determines incremental
movements of the robot. The result of the virtual sensor can be sent
wirelessly, e.g. via ROS messages [13], to the central unit of the
robot, where it is used in the control algorithm. The smartphone
could work also in a telerobot (remote) control mode [14], wherein
the whole control algorithm [15] would run on it and only
commands according to the desired task would be sent to the
autonomous ground vehicle. The above mentioned virtual sensor
can easily be applied also in the application for guiding humans
[16,17] in an indoor space.

The operation of the localization system is proved by
experimental results which were obtained by attaching a
smartphone on a pedestrian who walked along the reference
trajectory drawn on the floor. When using a smartphone as an
external sensor unit on a robot, equally good or even better results
are expected than when using it on a pedestrian due to much less
vibrations.

In the following sections the components of the monocular
visual odometry are first presented, then visual odometry itself.
Afterwards, the inertial navigation system which includes a digital
compass and a pedometer is described as well as the fusion of
visual odometry and inertial navigation system. Finally, the
experimental results of the implemented system functionality
are given.

2. Monocular visual odometry

Monocular visual odometry is the sequential estimation
process of camera motions depending on the perceived move-
ments of pixels in the image sequence. The visual odometry
consists of four algorithms, namely: the camera calibration, the
odometry and inertial navigation system on a smartphone, COMIND
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feature tracker, the algorithm for the estimation of a rigid motion
model and the RANSAC algorithm.

2.1. Camera calibration

If it is assumed that the camera has a thin lens, then it can be
described with the pinhole camera model [18]. A point located in
the image is denoted with m = [u,v]T and a point located in the 3D
space is denoted with M = [X,Y,Z]T [19]. A projected point m is
determined with an optical ray that is reflected from a point M of
the observed scene and travels through the optical centre C and
then hits the image plane. Points m and M can be written in
homogeneous coordinates as m = [u,v,1]T and M = [X,Y,Z,1]T. The
pinhole camera model defines transformation between the 3D
point M and its projection on the image-point m:

sm ¼ A½R T�M (1)

where s is the scale factor. Rotation matrix R and translational
vector T represent the extrinsic parameters which describe the
transformation between the world coordinate system and the
camera coordinate system. A is a matrix of camera intrinsic
parameters and it is defined as:

A ¼
a g u0
0 b v0
0 0 1

2
4

3
5 (2)

where (u0v0) is the principal point, a = fsx and b = fsy represent the
focal length expressed in pixels according to the coordinate axes u
and v. f is the focal length expressed in millimetres, sx and sy are
scale factors according to the coordinate axes u and v, which
determine number of pixels per millimetre. Skew parameter g
represents the distortion of a pixel.

From a plurality of modes for the estimation of the planar
homography between the calibration target (the plane is covered
with a chessboard pattern) and its image, a method that is based on
the criterion of maximum likelihood [19] was chosen. In this case
the calibration parameters are estimated analytically in the first
step. In the second step this result is optimized by using the non-
linear optimization technique based on the maximum likelihood
criterion.

It may be assumed for the calibration target that Z component
of the point is always equal to zero. Therefore the point M can be
written as M = [X Y]Tor in homogeneous coordinates as M = [X Y 1]T.
Consequently the transformation between points m and M can be
written as:

sm ¼ HM (3)

where H = A[r1r2T] is homography, which is defined up to scale
factor l. Further the next relation can be written:

½h1h2h3� ¼ lA½r1r2T�; (4)

where ri is i-th column of the matrix R and hi is i-th column of the
matrix H. The maximum likelihood estimation of homography H is
obtained by minimizing the expression:X

i
¼ ðmi � m̂iÞTL

�1
mi

ðmi � m̂iÞ (5)

where m̂i ¼ 1
h3TMi

h1TMi

h2TMi

��
is the point extracted from the model of

the calibration target points, hi is i-th row of the matrix H and
Lmi ¼ s2I is the covariance matrix. Eq. (5) is further written as a
nonlinear minimization problem, which is based on the method of
least squares minH

P
ik mi � m̂i k2. To obtain the analytic solution,

all rows of the matrix H are further written in matrix

x ¼ h1T; h2T; h3T
�T"

and Eq. (3) is transformed in:
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MT 0T �uMT

0 T M T �vMT

� �
x ¼ 0 (6)

or Lx = 0, where matrix L has dimensions 2n � 9 (n is the number of
points). Since the matrix x is defined up to the scale factor, the
solution is the right singular vector of the matrix L, which is
associated with the smallest singular value.

Matrix B = A�TA�1 is considered as a symmetric matrix, which
can be defined as 6D vector b = [B11,B12,B22,B23,B33]T.

If the i-th column of the matrix H is written as hi = [hi1,hi2,hi3]T,
then the next equation is valid:

hT
i Bhj ¼ vTijb (7)

where vij ¼
½hi1hj1; hi1hj2 þ hi2hj1; hi2hj2; hi3hj1 þ hi1hj3; hi3hj2 þ hi2hj3; hi3hj3�T :

If it is considered that the vectors of r1 and r2 are orthonormal,
the equation for the limitation of intrinsic parameters can be
written:

vT12
ðv11 � v22Þ T

� �
b ¼ 0 (8)

If n images of the calibration target are captured, then also the
number of Eq. (8) is equal to n, which further can be combined in a
new equation as:

Vb ¼ 0 (9)

where V is the matrix with dimensions 2n � 6. Since a unique
solution b is required, the number n has to be n � 3. The solution to
Eq. (9) is obtained by using the singular value decomposition
(SVD), as the eigenvector of matrix VTV, which belongs to the
smallest eigenvalue (equivalently, the right singular vector of V
associated with the smallest singular value). If the smallest
eigenvalue of the matrix VTV is equal to zero, then the eigenvector,
which belongs to this eigenvalue, is the exact solution for the
equation [13]. This statement is true also when n = 3 if the matrix V
is singular (one of the singular values which are computed with the
SVD is equal to zero). In all other cases when there is no singular
value which would be equal to zero (the rank of matrix V is equal to
six), the eigenvector of matrix VTV, which belongs to the smallest
eigenvalue, represents the best solution in a sense of least squares.

When the vector b = [B11,B12,B22,B13,B23,B33]T is estimated, all
intrinsic parameters can be computed as:

v0 ¼ B12B13 � B11B23

B11B22 � B2
12

  !
l ¼ B33 � ðB2

13 þ v0ðB12B13 � B11B23ÞÞ
B11

a ¼
ffiffiffiffiffiffiffi
l
B11

s
; b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lB11

B11B22 � B2
12

s

g ¼ �B12a2b
l

; u0 ¼ gv0
b

� b13a
2

l
(10)

When the matrix of the intrinsic parameters A is determined,
extrinsic parameters considering Eq. (4) can be calculated (where
orthonormality of r1 and r2 is taken into account):

r1 ¼ lA�1h1

r2 ¼ lA�1h2

r3 ¼ r1 � r2

T ¼ lA�1h3 (11)

where l ¼ 1= k A�1h1 k¼ 1= k A�1h2 k. In the calibration process
the radial distortion described by the following model was also
taken into account:
odometry and inertial navigation system on a smartphone, COMIND
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x0 y 0
�
¼ ð1 þ k1r2 þ k2r4Þ x

y

� ��
(12)

where ½x0 y
0� are coordinates of the distorted point, [x y] are

coordinates of the undistorted point and parameter r is equal to
r = x2 + y2. The radial distortion coefficients are denoted by ki.

The calibration procedure can be summed up as follows: 1.
capturing images of the calibration object from different angles (to
achieve good results of the camera calibration at least twenty
image shots are required), 2. detecting the corners on the
chessboard for all captured images, 3. estimating homographies
for all captured images by using Eq. (6), 4. considering all
homographies in Eq. (9), which is used for estimation of vector b
with SVD, 5. estimating five intrinsic parameters considering
vector b and Eq. (10), 6. estimating rotation matrices and
translation vectors (with Eq. (11), for all images) which represent
extrinsic parameters, 7. optimizing all calibration parameters and
radial distortion coefficients, using the Levenberg–Marquardt
algorithm:

Xn

i¼1

Xm

j¼1
k mij � m

0ðA;k1 ;k2 ;Ri ;T i ;MjÞk2
(13)

where point m0ðA;k1 ;k2 ;Ri ;T i ;MjÞ is a projection of a point Mj in the
image i according to Eq. (3).

In the algorithm of visual odometry, it is necessary to know the
rigid transformation between ground (plane) C.S. and camera C.S.:
g = (RCP,TCP). This rigid movement can be calculated by considering
the rigid transformation between the chessboard and the camera
g = (RCT, TCT) (Fig. 1) and the assumption that yaw = 0 between
ground and camera C.S.

2.2. Optical flow

Optical flow is a way of describing the seeming movement of
surface, objects and edges that occurs due to the relative motion
between the observer and the scene. The purpose of the optical
flow methods (Kanade and Lucas [20], Horn–Schunck, etc.) is to
determine the movement between two consecutive images which
are captured at time t and t + Dt. These optical flow methods are
considered as differential methods, since they are based on local
Taylor approximation of image signal.

In the implementation of the visual odometry algorithm,
Kanade–Lucas-Tomasi (KLT) feature tracker was used, which was
introduced in three articles, namely Lucas and Kanade [20], Tomasi
and Kanade [21] and Shi and Tomasi [22]. The problem solved by
the KLT algorithm can be defined as searching moves between two
consecutive images, which are denoted by I and J. These two
images are grayscale images with size Nx� Ny pixels. Let I(x,y)
Fig. 1. Transformations between ground C.S., chessboard C.S. and camera C.S.
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represent the intensity of a grayscale image I in the point (x,y). If
point u = (ux,uy) is known in the image I, then the aim of the
algorithm is to find the point v in the image J, where the values of I
(u) and J(v) are similar (v = u + d = (ux + dx, uy + dy)). In the point u the
optical flow is equal to d = [dx dy]T. Current optical flow is evaluated
with the estimator e(d), which is defined as:

eðdÞ ¼ eðdx; dyÞ
¼
Xuxþvx

x¼ux�vx

Xuyþvy

y¼uy�vy
ðIðx; yÞ � Jðx þ dx; y þ dyÞÞ2; (14)

where vx in vy are parameters which determine the size of the
integration window: (2vx + 1) � (2vy + 1) (Fig. 2).

Ordinary algorithm KLT works well only when the movements
of the pixels are small. For larger movements the pyramidal
implementation of this algorithm is needed [23,24]. In the
pyramidal implementation of algorithm KLT, the optical flow is
estimated on an image pyramid I0! I1! I2! I3! ILm . . . (Lm: 2�4),
where the optical flow is computed first at the highest level and
then at lower levels up to the level zero. On each level a preliminary
estimation of the movement from the higher level is considered.
The reason to start the calculation on the highest level is that the
movement is the smallest at a minimum resolution. The optical
flow on the individual level is calculated by using the gradient
matrix:

G ¼
Xpxþvx

x¼px�vx

Xpyþvy

y¼py�vy

I 2x IxIy
IxIy I 2y

" #
(15)

and image mismatch vector:

b ¼
Xpxþvx

x¼px�vx

Xpyþvy

y¼py�vy

dI I x
dI Iy

� �
(16)

as:

dL ¼ G�1b (17)

where Ix in Iy are the partial derivatives of the image I and dI(x,y) = A
(x,y) � B(x,y) is the difference between two sub-images. The final
optical flow is obtained as:

d ¼
XLm

L¼0
2LdL (18)

where dL is the estimated displacement on the L-th level.

2.3. Algorithm RANSAC

The RANSAC (RANdom SAmple Consensus) [18,25,26], is an
iterative method to estimate parameters of a mathematical model
from a set of observed data which contains a lot of outliers. In
statistics, an outlier is an observation point which is distant from
other observations due to extreme values of the noise or erroneous
measurements. By using algorithm RANSAC, parameters of a model
which fits given data can be estimated robustly even when data
contain a lot of elements (up to 50%) which greatly differ from the
exact values. Roughly speaking, the algorithm works in two steps
that are iteratively repeated. In the first step, a set with a minimum
number of data elements m (i.e. m = 3 for determining the rigid
motion) for the estimation of parameters of a model is randomly
selected from the data and then a model is fitted to this set of
hypothetical inliers. In the second step, when the parameters are
estimated, it must be checked how many of the remaining data
elements suit to the estimated model. A data element will be
considered as an outlier if it does not fit the fitting model within
some error threshold that defines the maximum deviation
attributable to the effect of noise. If the number of data elements
that fit the estimated model well is larger than a certain threshold,
then the model is accepted and the fitting data elements are stored,
odometry and inertial navigation system on a smartphone, COMIND
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otherwise the procedure must be repeated. The probability that
the selected model with currently estimated parameters optimally
explains given data increases with the number of iterations K. This
parameter of the algorithm RANSAC can be determined by the
following equation:

K ¼ logð1 � pÞ
logð1 � wmÞ; (19)

where p is the probability that a set of m data elements which does
not contain outliers is found (i.e. the probability that the algorithm
produces a useful result, e.g. if it is required that algorithm RANSAC
is successful in 99% of all the cases, then p must be equal to 0.99)
and wm is the probability that all of m selected data elements are
inliers (e.g. if data consist of 60% inliers and 40% outliers then
wm = 0.6m). In practice only a rough estimation of the proportion of
inliers in data is needed.

2.4. Determining the rigid motion

In the case of a rigid motion [27] the movement of individual
points does not need to be described, but only the movement of
one point which represents the movement of the entire set of
points can be given. In the case of a rigid motion the distance and
also the orientation between points are preserved. This means that
the norm of the vectors and their vector product remain the same
in a rigid motion.

In the visual odometry algorithm a key step is the calculation of
a rigid transformation between the two sets of points obtained by
using the KLT feature tracker. This transformation between the two
sets of points {xi} and {pi}; i = 1:N in the two-dimensional space is
determined with the rotation matrix R2�2 and translation vector
T2�1, which must minimize the following cost function:

f ðpÞ ¼ 1
N

XN

i¼1
k xi � RðyÞ�pi � T k2; (20)

where n is the angle of rotation. If the geometric centre of all points

from the first set is denoted by c ¼ 1=N
PN

i¼1 xi and the geometric
centre of all points from the second set is denoted by

c0 ¼ 1=N
PN

i¼1 pi, then the translation is defined as:

T ¼ c � Rc0 (21)

In order to determine the translation, firstly the estimation of
rotation between the two sets of points p̂i ¼ pi � c0 and x̂i ¼ xi � c
must be solved. The points p̂i and x̂i have the geometric centre in
the origin. The rotation matrix can be obtained by using the
orthogonal Procrustes algorithm [28,29]. Arun et al. [30] presented
a way of solving the Procrustes problem by using the singular value
decomposition—SVD of correlation matrix in their work. The
correlation matrix C of size 2 � 2 (or 3 � 3 in 3D space) can be
written as:

C ¼
XN

i¼1
p̂ix̂iT ¼ U

X
VT (22)

where USVT represents a singular value decomposition. The
matrices U and V are orthonormal matrices and S is a diagonal
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matrix with nonnegative elements. The rotation matrix is
calculated from the resulting matrices U and V as:

R ¼ VUT (23)

The size of matrix R determinant must always be checked, as it
must be equal to +1 so that the rotation matrix is correctly
determined. When the rotation matrix is known, the translational
vector can be calculated by using Eq. (21).

2.5. Monocular visual odometry

In the implementation of monocular visual odometry the
following assumptions were taken into account: the camera is
pointing towards a flat surface and a rigid transformation between
the camera C.S. and the ground C.S. is the same at all times. Such
assumptions are often true for autonomous vehicles and robots
that move on a flat surface and also for pedestrians who walk at a
normal speed on a flat surface, if raising and lowering of the body
during the walk are disregarded.

As it has been already mentioned, the visual odometry
algorithm consists of four basic components which were described
in the previous subsections. The first component is the calibration
algorithm, which is not performed as a part of the visual odometry,
but it is executed only once as an initialization procedure in which
the transformation between the camera C.S. and the ground C.S. is
determined. The KLT algorithm, the algorithm for determining the
Fig. 3. The flowchart of the visual odometry algorithm.
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rigid transformation and RANSAC algorithm are three basic
components of visual odometry, which must be performed in
real time on the selected hardware—on the smartphone. Since
modern smartphones have built-in multi-core processors, the
visual odometry algorithm has been implemented in a way that
compute-intensive parts are performed on separate threads which
can be executed on individual processor cores. This means that the
individual components of visual odometry can be performed
simultaneously. Fig. 3 shows a flowchart of the visual odometry
algorithm, which is divided into two parts i.e. two threads. The
algorithm KLT or determination of traces is assigned to one thread
(left half of the diagram), the algorithm for determining the rigid
movement and RANSAC algorithm are assigned to another thread
(right half of the diagram) with the purpose of making the two
parts of the algorithm approximately equal in the sense of
computational intensity. Since KLT algorithm works better for
small movements of feature points, it is important that the
algorithm runs fast and so more frames per second are processed.
All components of the visual odometry algorithm running in
separate threads must appear as a whole meaning they must
communicate with each other. Thus, the threads exchange data, as
it is shown in Fig. 3 with dashed lines. The first thread, which is
responsible for the determination of traces of feature points, sends
information about the currently active traces to the second thread,
and the second thread sends the information to the first thread
about traces which were used in determining the rigid transfor-
mation and traces which represent outliers according to the
selected model (i.e. determined with RANSAC). This information is
stored in the so-called cookie of the individual trace. In the KLT
thread these cookies are refreshed every time when a new image is
captured and then if necessary, according to the provided
information, deletion and adding of new traces is carried out.

Below is described a part of the visual odometry algorithm,
which is represented by the right half of the diagram in Fig. 3. This
part of the algorithm mostly consists of the algorithm for
determining a rigid transformation and the RANSAC algorithm
by which a rigid transformation from current C.S. to the world C.S.
is obtained.

In the visual odometry algorithm, detected movements are
calculated in a 2D space, and then the final result is transformed
into a 3D space for the purpose of calculating a rigid transforma-
tion from the camera C.S. to the world C.S. For determining the rigid
movement in 2D, three coordinate systems are important, namely
world C.S. (W), key C.S. (K) and the current (plane) C.S. (P), which
are aligned at the start-up of visual odometry (Fig. 4). As can be
seen from the figure, these coordinate systems lie in the XZ plane of
ground C.S., and they have a slightly different orientation in
relation to the 3D ground C.S. The axis Y2D of the current C.S. (2D)
Fig. 4. Rigid movement in 2D from the current C.S. to the world C.S. is obtained by
considering regular calculations for the rigid transformation from the current C.S. to
the key C.S.
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coincides with the axis—X and the axis X2D coincides with the axis
Z of the ground C.S.

With each new image frame the new position of active traces in
the current C.S. is obtained. World C.S., which is determined by the
first frame, is not moveable and it presents a reference C.S. in which
the final result of visual odometry, i.e. current position of the
camera, is expressed. The key C.S. is determined by the first frame,
and it moves in the current C.S. only when new traces are added
(when the number of all traces falls below a certain threshold, the
new traces must be extracted). In this case the rigid transformation
from the key C.S. to the world C.S. g2D

WK is refreshed, i.e. it becomes
equal to the transformation g2D

WP and all key points which belong to
the active traces are moved to the current C.S.

From the pixels that are defined by the active traces, the points
on the normalized image plane can be calculated by considering
the intrinsic parameters and radial distortion. These points can
then be transformed into the 2D space of the ground (to the floor)
so that the coordinates are expressed in the current C.S. Before the
points are used for the calculation of the rigid transformation, it
must be checked which detected feature points lie on the surface
(i.e. denoted as “sort active points” in Fig. 3). This can be done by
describing the pixels of the active points in the ground C.S., and
then Y component of each point is verified if it is positive (i.e. the
ray that passes through this point on the image plane penetrates
the floor).

Point x = (x, y), determined by the ray which travels from the
focal point towards the ground and passes through the normalized
image plane, can be expressed in homogeneous coordinates as
x = (x, y,1). To get the point on the ground (lx, ly, l) in camera C.S.,
which is determined by a ray passing through x = (x,y,1), scale
factor l must be calculated. This factor determines the distance to
the point in the Z direction of the camera coordinate system. The
problem of searching the scale factor is solved in such a way that
the point (x, y, 1) is first rotated using the rotation matrix RPC, with
the purpose of getting the point (X, Y, Z) in the coordinate system
which has the axis aligned with the ground C.S. If it is assumed that
this point lies on the ground, then its Y coordinate must be equal to
the height of the camera from the ground. Thus, the point in the

plane of the current C.S. (2D) is determined as X2D
P ¼ ðZ�t; �X�tÞ,

where t = camera height/Y (this ratio determines that the point lies
on the floor). The height of the camera is obtained from the known
translational vector TPC, which is calculated in the calibration
phase. When the corresponding points are mapped from the image
plane to the ground in the current C.S. (2D space), the model of
rigid movement from the current C.S. to the key C.S. g2D

KP can be
calculated. This rigid transformation represents the core of the
entire visual odometry. All 2D rigid movements can be described
by means of the translation T = [X, Y]T, and an angle of rotation
(yaw), which determines the rotation matrix

R ¼ cosðyawÞ �sinðyawÞ
sinðyawÞ cosðyawÞ
� �

: (24)

The rigid transformation g2D
PK between key points and current

points on the plane is calculated simultaneously using Procrustes
analysis. In doing so, the suitability of the model is checked with
the algorithm RANSAC. This algorithm checks which model
calculated by randomly selected three pairs of points corresponds
to the maximum number of remaining pairs of points. The pairs of
points consist of the currently active points on the floor (Fig. 5, step
1) and corresponding key points. The resulting model (Fig. 5, step
2) is used in conjunction with a rigid transformation between the
ground C. S and the camera C.S. and in this way the current points
of the model in the normalized image coordinates from the key
points are computed (Fig. 5, step 3). These points are then
odometry and inertial navigation system on a smartphone, COMIND
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compared to the real current points by calculating the Euclidean
distances (Fig. 5, step 4). When the distance between the points is
known, the algorithm can determine how many points are
described well by the model. The distance between points is
expressed in pixels. The points and their traces which do not
correspond to the resulting model are added on the list for
deletion. Each trace is deleted if it is not used in the last X (the
parameter that you set) images. When the number of active traces
falls below a certain threshold, new traces are generated by means
of KLT algorithm. With each new image frame the active traces of
the feature points are updated and transformation from the
current C.S. to the world C.S. g2D

WP, which presents a part of the final
transformation from the camera C.S. to the world C.S., is calculated
as g2D

WP ¼ ðRWP; TWPÞ ¼ g2D
WKg

2D
KP .

In order to calculate the transformation from the world C.S. to
the camera C.S., first the rigid movement gWP in 3D from the
current C.S. to the world C.S. (the orientation of C.S. in 3D is the
same as in the ground C.S., which is marked with dotted line in

Fig. 4) must be calculated: T3D
WP ¼ ½�TY ; 0; Tx�; R3D

WP ¼ rotyð�yawÞ
(minus sign is obtained, since the axis of rotation have the opposite
direction in 3D space in relation to 2D space).

When the transformations gPW ¼ g�1
WP and gCP (in 3D), which are

shown in Fig. 6, are determined, the rigid movement from
the world C.S. to the camera C.S. can be calculated as:
gCW ¼ ðRCW; TCWÞ ¼ gCPgPW (gCP is calculated in the calibration
phase). If the inverse of transformation is found:
g�1
CW ¼ gWC ¼ ðRWC; TWCÞ, then the translation vector TWC defines
Fig. 6. Rigid transformation from the world C.S. to the camera C.S. 

Please cite this article in press as: S. Tomaži9c, I. Škrjanc, Fusion of visual 

(2015), http://dx.doi.org/10.1016/j.compind.2015.05.003
where the camera is positioned in relation to the world C.S. at any
given moment. Thus this vector represents the output of the
monocular visual odometry.

3. Inertial navigation system

PDR (Pedestrian Dead Reckoning) is a technique that is used in
inertial navigation systems (INS) for the purpose of determining
the movement of pedestrians (smartphone users) according to the
initial position. The movement is given by the number of taken
steps and directions in which these steps are taken. The Dead
Reckoning technique based on inertial sensors is increasingly
present as a complementary system in different localization
systems of autonomous mobile systems and robots. The advan-
tages of this approach are small dimensions of sensors and their
low cost and above all this approach significantly contributes to
improving the accuracy of localization systems. Inertial navigation
system is based on three sensors, namely accelerometer, gyroscope
and magnetometer. With the signal processing of these sensors, a
digital compass for the purpose of determining the orientation and
a pedometer for the purpose of calculating the walking distance
can be implemented. These two components represent the basis of
the inertial navigation system. Pedometer consists of the step
counter and the algorithm for the step length estimation. For the
autonomous mobile systems, where the usage of a pedometer is
not possible for the purpose of calculating the length of the
travelled path, double integration of acceleration can be used.
However, in this case due to tilt error and noise contained in the
accelerometer signal, the error is rising rapidly, and it must be
compensated by considering another localization technique, e.g.
visual odometry. In case that a global localization technique, such
as localization by using WiFi or Bluetooth signals is available, it is
most appropriate to use it for the purpose of limiting the increase
of the total error caused by dead reckoning technique [31].

3.1. Digital compass

One of the key components of inertial navigation system is a
digital compass, whose mission is to determine the absolute
orientation of the device (and the user) as best as possible
according to the world coordinate system (Fig. 7). Digital compass
requires essentially two sensors, namely accelerometer, and
magnetometer to operate. The accelerometer can determine the
direction of gravity (which is parallel to the Z-axis of the world C.
S.), and the magnetometer can find the direction of the magnetic
north. According to these two directions the X-axis (Fig. 7) can be
calculated with the cross product. For more accurate and stable
operation of the digital compass a gyroscope is needed that
accurately measures angular velocity (relative rotation) and it is
Fig. 7. World coordinate system used by the Rotation vector [33].
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also much more responsive (higher sampling rate) than magne-
tometer. The gyroscope can successfully eliminate false rotations
returned by the magnetometer in the presence of a magnetic
interference. All mentioned sensors measure its values relative to
the device coordinate system (Fig. 8). The inertial sensors are rarely
used individually primarily due to noise, drift and bias which are
present in the measurements of the sensors. All mentioned
sensors’ errors can be largely eliminated by the fusion of all three
sensors. Thus, the Android operating system already includes
multiple virtual sensors or software-based sensors that combine
measurements from the hardware-based sensors. One of the
software-based sensors is the Android Rotation vector, which
combines the accelerometer, gyroscope and magnetometer by
using the Kalman filter [32] in one orientation sensor. The output of
this sensor is in the form of rotational vector (or quaternion), which
describes the absolute orientation of the smartphone in relation to
the world C.S. (Fig. 7).

It also depends on the MEMS chip (Microelectromechanical
systems), which is built into the smartphone, how effective the
sensor fusion, which is included in the Android OS by default, is. In
the test of a digital compass which is based only on the Rotation
vector, it has been found that the gyroscope has too little role in the
default sensor fusion, since magnetic disturbance in the surround-
ings has big impact on the measurements of rotation. The
measurement deviation is especially a big problem when magnetic
disturbance is spread over a large part of the route. In this case the
direction of orientation slowly drifts toward wrong value returned
by magnetometer. Therefore, the second-level fusion of the
measurements of the Rotation vector and the calibrated gyroscope,
which maintains low drift errors, has been implemented. The
calibrated gyroscope is very responsive and precise at measuring
the rate of rotation. There is only one problem with gyroscopes,
namely they provide only relative rotations. The aim of the
proposed fusion is to increase the impact of the gyroscope to get an
Fig. 9. Second-level fusion of measurements of Rotation vector and calibrated
gyroscope.
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even more precise virtual orientation sensor. The diagram of the
sensor fusion is shown in Fig. 9, where the right window
summarizes the second-level fusion.

As the gyroscope measures the rate of rotation (angular velocity),
the sensor’s output must be integrated in order to get a relative
rotation. Then, the angle obtained from the gyroscope can be written
in the form of a quaternion, while the output from the rotationsensor
already has that form. A quaternion is determined by the axis of
rotation and the angle of rotation about this axis. The most
appropriate way to combine two quaternions (interpolation) is
the Quaternion SLERP (Spherical Linear Interpolation) [34] method,
in which the contribution of each quaternion is determined by the
weights. In this case, the impact of the gyroscope should be
increased, while the influence of the Rotation vector can be
decreased to the limit which is necessary for eliminating the drift
of the gyroscope. Weight which is close to one (e.g. 0.998) has been
assigned to the gyroscope. The Rotation vector is used to determine
the initial absolute orientation of the smartphone according to the
world coordinate system. Therefore, both quaternions are initialized
to the same value at the beginning. This means that their dot product
is equal to one. If one of the vectors jumps instantaneously, then the
dot product is also changed (it is decreased). In case that the dot
product falls below a certain threshold (e.g. 0.8) then rotation is
determined only by the gyroscope. This could happen in case of
magnetic disturbance when the magnetometer returns false
orientation of the device. If a device is exposed to vibration the
incorrect values can be returned also from the gyroscope. Therefore,
in case that the dot product of both vectors is below a certain
threshold for a long period of time (both parameters are set), it is
necessary to initialize again both rotations to the current value of the
Rotation vector. The result of the fusion, which is expressed by a
quaternion, is converted into a rotation matrix, and Euler’s angles
[35]. Only rotation around the Z-axis (world C.S.), i.e. yaw is
important for the purpose of the digital compass. The methods
for converting quaternions to the rotation matrix and Euler angles,
which are by default included in the Android SDK, were used.

3.2. Pedometer

In the inertial navigation system for pedestrians a double
integration of acceleration can be avoided by using the pedometer
in determining the travelled path length. In this way, the travelled
path length can be calculated more accurately at the known step
length since the accumulated error (due to inaccurate stride
length) is not rising as fast as in the double integration. Pedometer
is a step counter which in most cases is based solely on the
accelerometer, but it can use also other sensors for its operation in
order to increase the reliability of the step detection. In this paper,
the described implementation of the pedometer considers, in
addition to the accelerometer, also the magnetometer and the
gyroscope, which enable the calculation of the acceleration only in
the vertical direction, regardless of the orientation of the
smartphone. The measurements of the vertical acceleration (along
the Z-axis of the world C.S.) describe the body movement during
walking in the best manner or they contain most information from
which it is possible to determine whether the user takes another
step. Fig. 10 shows the key elements of the algorithm for the step
detection in the form of a diagram.

The vertical acceleration is obtained by considering the rotation
matrix RWS (with size 3 � 3), which is determined by the improved
virtual rotation sensor. The latter was described in the subsection
of the digital compass, where it is used for determining the
orientation of the device. Since the matrix RWS describes the
transformation between the world C.S. (W), which is shown in
Fig. 7, and smartphone (S) C.S., which is shown in Fig. 8, the
acceleration in the direction of Z-axis of the world C.S. (Fig. 8) can
odometry and inertial navigation system on a smartphone, COMIND

http://dx.doi.org/10.1016/j.compind.2015.05.003


Fig. 10. Implementation of pedometer.

S. Tomaži9c, I. Škrjanc / COMIND xxx (2015) xxx–xxx 9

G Model
COMIND 2688 No. of Pages 16
be calculated as:

az ¼ ½RWSð3; 1ÞRWSð3; 2ÞRWSð3; 3Þ��½axayaz�T ; (25)

where ax, ay and az are accelerations in the direction of the axes of
the smartphone C.S. The form of the signal of the vertical
acceleration depends on the position of the smartphone (in hand,
mounted on a body, etc.) and the walking mode of the user.
However, regardless of these effects it is desired that the signal
shape for further processing (for detecting local extremes) is as
close as possible to the sinusoidal signal. In addition to the white
noise which is incorporated in the accelerometer signal by default,
high-frequency disturbances due to rapid oscillations of the device
during walking (Fig. 11, above) are also presented. With the
purpose of eliminating high-frequency disturbances, a low-pass
filter with a cut-off frequency of 10 Hz was used, and in this way a
signal that is suitable for detecting local maxima and minima
(Fig. 11, below) was obtained. As can be seen in Fig. 11 below, the
filtered signal is locally monotonically increasing and decreasing.
So the local extrema are obtained by checking if there has been a
change in the sign of the derivative of the signal. The locally
maximum values are detected by checking if the signal has passed
from the part of monotonic increasing to the part of monotonic
decreasing. The locally minimum values are detected by checking if
the signal is passed from the part of monotonic decreasing to the
part of monotonic increasing.

The individual steps are detected in the area of signal where
acceleration increases from minimum to maximum value. In the
Fig. 11. Above: raw vertical acceleration;
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process it is checked if the absolute value of the difference between
the maximum and the minimum value is greater than the selected
threshold:

jamax � aminj > threshold (26)

In case that this condition is true, the algorithm registers that a
new step is detected. Scientific writings also describe other
methods for the step detection, e.g. the ZUPT (Zero Velocity
Update) method [36], and methods based on frequency analysis of
the accelerometer signal. In the described algorithm for the step
detection the information (i.e. number of steps per second)
obtained by frequency analysis (FFT—Fast Fourier Transformation)
is not necessary since it does not contribute to the reliability of
detecting steps and it is quite compute-intensive.

3.3. Estimation of stride length

In order to use the pedometer as part of the inertial navigation
system, it is necessary to know the length of each step. The most
simple way of determining the step length is to assume that it is
equal to an average value which is the same all the time.
Leppakoski et al. [31] have suggested that the stride length varies
linearly relative to the average step intervals (the higher step
frequency means the longer step). For described pedometer a
model based approach that describes the stride length by the
maximum and minimum values of the vertical acceleration at
current detected step was used [35]. The stride length defines the
equation:

L ¼ K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
amax � amin

4
p

(27)

where amax is the maximum vertical acceleration and amin is the
minimum vertical acceleration. K is a constant value which is
different for each pedometer user. It can be calculated at startup by
using the visual odometry. So, if the pedometer detects steps and
each step length (which must be within the expected interval, e.g.
between 0.3 m and 1 m) is provided by visual odometry, then the
conditions are met so that the constant K can be calculated for each
 below: filtered vertical acceleration.
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step by using the following equation:

K ¼ Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
amax � amin

4
p (28)

where L is the step length measured by visual odometry as:

Lk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxk � xk�1Þ2ðyk � yk�1Þ2

q
. (xk,yk) and (xk�1,yk�1) are the

positions of a smartphone in 2D world C.S. (see Section 2.5) at time
k and k � 1 respectively. After five detected steps, the average value
of the obtained constants K, which is then used in the calculation of
stride length using Eq. (27), can be calculated. This process of
setting the parameter K can be repeated several times while the
application is running, and in this way the value of the constant K
can be corrected to the new average value.

3.4. Fusion of visual odometry and inertial navigation system

Fusion is the combining of measurements (data) obtained by
various sensors or methods in order to achieve more accurate and
reliable information than when sensors or methods are used
individually. In this study, the aim was to combine the information
obtained by visual odometry and inertial navigation system using
the Extended Kalman Filter (EKF) [31,37]. A technique of loosely
coupled Kalman filter [5] was used, in which the visual odometry
was calculated independently of the inertial navigation system.
Both results were then combined with the already mentioned filter
where inertial navigation system (compass and pedometer) was
used as a prediction (to propagate the state of the filter) and visual
odometry (2D transformation from the current in the world C.S.) as
a correction (or measurement update). Since the Kalman filter is
computationally efficient, it is suitable for the implementation on a
smartphone. The Extended Kalman Filter is executed on its own
thread, so that the operation of visual odometry is not slowed
down at the fusion of information.

The fusion of visual odometry and inertial navigation system was
performed in order to eliminate weaknesses of individual
approaches and achieve a more accurate and robust tracking of
the smartphone user. The visual odometry is especially important for
determining the travelled distance, since the model for the stride
length estimation is also based on visual odometry (to determine the
constant K). In the visual odometry it has turned out that problems
arise in the case of poor lighting conditions or high-speed turns
when the traces of feature points are lost due to image blurring. In
this case, the digital compass, which is a part of the inertial
navigation system, offers an appropriate solution for correcting
inaccurate rotations obtained by odometry. When the camera is
directed towards the ground which has a very monotone texture,
the features tracker provides traces with difficulty since there are
not enough feature points. This means that traces are limited in
number and a lot of them are incorrectly determined (e.g. in straight
movement a trace appears which points to the left or right).
Therefore, in such cases, it is desired that prediction (in the EKF) of
smartphone position and heading is performed using inertial
navigation system, which allows the reduction of the impact of
incorrect results of visual odometry on the final estimation of the
user’s location. Inertial navigation system is not as accurate in
determining the length of the route as visual odometry is, but it can
satisfactorilycompensate for the error that would otherwise arise in
the case when the visual odometry breaks down. By the fusion
(filtering) of headings from both systems the influence of magnetic
disturbances and gyroscope drift are also reduced. Both visual
odometry and inertial navigation system belong to the dead
reckoning localization technique, which means that the position
error in relation to the starting point increases over time. With the
fusion of both systems, the error increasing is reduced but it cannot
be completely eliminated due to the dead reckoning approach of
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these systems. On the other hand, the error in determining the
heading does not increase over time, since the digital compass,
which determines the absolute rotation by considering a magne-
tometer, is incorporated in the fusion of systems.

The crucial steps of fusion are illustrated with flowchart in Fig.12,
where it can be seen that the combining of information is carried out
when the pedometer detects a new step. As the diagram shows, the
output of inertial navigation system is used in the prediction phase
and the output of visual odometry in the correction phase of the EKF.
The outcome of the fusion is a corrected transformation from the
current to the world C.S. In order to determine the new transforma-
tion from the key to the world C.S. correctly, after new traces have
been added in the visual odometry algorithm, correction transfor-
mation needs to be calculated, which is determined by the difference
between the corrected transformation from the current to the world
C.S. and transformation that is returned by the visual odometry. This
correction transformation is then considered in the correction of the
transformation from the current to the key C.S. determined by visual
odometry. Adding of new traces is performed with each detected
step or when the number of active traces falls below a certain
threshold.

The estimation of the position of a smartphone user based on
the PDR technique starts at the initial coordinates x0 and y0 and
initial heading u0. The new position (after the next step) in 2D
space (xk,yk) and heading uk are then calculated using a non-linear
state model:

uk
xk
yk

2
4

3
5 ¼

uk�1þ Duk
xk�1þ lkcosuk
yk�1þ lksinuk

2
4

3
5; (29)

where Duk is the change of the heading between the steps at
discrete time k � 1 and k respectively and lk is the current stride
length. Since the state model is non-linear, the ordinary Kalman
odometry and inertial navigation system on a smartphone, COMIND
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filter is not suitable and therefore an Extended Kalman Filter was
used [5].

The elements of the state vector xk are as follows: x1 = heading,
x2 = x coordinate, x3 = y coordinate. Filtering or fusion with an
Extended Kalman Filter started at the initial estimation of state x̂0
and the initial covariance P0. Initial state estimation is calculated at
the first detected step using the current transformation from the
current to the world C.S. which is determined by visual odometry
algorithm. A Motion model which is used in prediction phase of an
Extended Kalman Filter determines where the smartphone user
would be at the moment k. Thus, the state propagation is defined
as:

x̂k
� ¼ x̂k�1 þ

Duk
lkcosx̂1k�1

lksinx̂1k�1

2
64

3
75; (30)

where x̂k�1 denotes the posterior estimate after the measurement
update using the measurement samples derived at k � 1 time step.
x̂k� represents the prior estimate for k-th time step, and x̂1k�1

represents the previous posterior estimate of heading. Change of
heading Duk is determined by the difference between the current
value of the compass and previous posterior estimate of heading
x̂1k�1

. The stride length lk is computed by the model described in
pedometer subsection.

The state matrix Fk, which is necessary for the covariance
propagation, is obtained by taking a partial derivative of (30):

Fk ¼
1 0 0

�lksinx̂
�
1k

1 0
lkcosx�1k

0 1

2
4

3
5 (31)

The state noise Qk is calculated on each new step as:

Qk ¼ diag
s2
Du

cos2ðx̂�1k
Þs2

l

sin2ðx̂�1k
Þs2

l

2
64

3
75

0
B@

1
CA (32)

where s2
Du is a variance of heading measurements obtained by the

compass and s2
l is a variance of step length estimates obtained by

the pedometer. In prediction phase the prior covariance P�
k is

calculated as:

P�
k ¼ FkPk�1F

T
k þ Qk; (33)

where Pk�1 is the posterior covariance from the previous time
step.

The measurement input zk ¼ ½uVOk
xVOk

yVOk
�T is provided by the

visual odometry and it consists of heading uVOk
(i.e. yaw) and

coordinates xVOk
and yVOk

, which are determined by the
transformation (in 2D space) from the current to the world C.S.

The measurement matrix H is equal to the unit matrix of size
3 � 3:H = I3�3. The measurement update of state x̂k and covariance
Pk can be calculated as:

Kk ¼ P�
k H

TðHP�
k H

T þ RÞ�1 (34)

x̂k ¼ x̂k
� þ Kkðzk � Hx̂k

�Þ (35)

Pk ¼ ðI3�3 � KkHÞP�
k (36)

where R is the covariance of heading and position estimation with
visual odometry and I3�3 is a unit matrix. Kk represents the gain of
the Kalman filter. The covariance matrix R is a diagonal matrix,
which is determined by experimentally estimated variances of
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heading and position. The state x̂k provides the corrected
transformation in 2D space from the current to the world C.S.

4. Results

4.1. Calibration results

Calibration was performed on an Android smartphone by using
the Java library BoofCV. The camera has a CMOS image sensor
(sensor size is 1/3.06 or 4.69 � 3.52 mm) with the resolution of
13.25 MP and the lens with the focal length f = 31 mm. The camera
calibration algorithm, which is described in detail above, is based
on the work of Zhang [19]. In the calibration phase firstly the
calibration object—chessboard was captured from different angles
(20 images). In the process the calibration algorithm detected the
corners (Fig. 13) by which the intrinsic camera parameters and the
coefficients of the radial distortion were calculated.

When the smartphone was placed on the height and slope
under which it was used for the purpose of visual odometry,
another chessboard image was captured. From this image the
extrinsic camera parameters and also the transformation gCP were
calculated (Fig. 14).
Fig. 14. Extrinsic parameters visualization.

odometry and inertial navigation system on a smartphone, COMIND
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Fig. 15. Optical flow on the smartphone.

Fig. 16. An example of error at determining trajectory using visual odometry.

Fig. 17. Determination of pedestrian trajectory through inertial navigation system.
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4.2. Optical flow on the smartphone

Fig. 15 shows the optical flow which provides for finding the
traces of points in the visual odometry algorithm which determine
the movements between the sequential image frames. The points
on each image frame represent the corners which are detected by
the Shi–Tomasi algorithm.

For proper functioning of the visual odometry it is important
that the feature tracker provides a sufficient number of good traces
in real time. Therefore, it was necessary to adjust the parameters of
KLT tracker according to the computing power of the smartphone.
The maximum number of traces is limited to 80, because if there
are too many traces, then RANSAC algorithm with a limited
number of iterations (e.g. 100 iterations) fails to determine the
correct model of a rigid movement. For fast performance of visual
odometry the number of RANSAC iterations must be as small as
possible.

4.3. Determination of pedestrian movement through the visual
odometry

The visual odometry algorithm is running on the smartphone in
real time where it can be processed from 10 to 15 fps and this is
entirely satisfactory for normal walking speed (2–3 steps per
second). Faster operation of the algorithm was achieved primarily
by splitting visual odometry algorithm into two parts which were
carried out simultaneously on separate processor cores. For the
purpose of testing the visual odometry, a smartphone was
mounted on a pedestrian who walked along a 12 m reference
trajectory which was drawn on the floor. The back of the
smartphone was facing the ground so that the optical axis of
the camera had an approximate inclination of 45� in relation to the
ground. Fig. 16 shows the result obtained in one of the experiments
with the visual odometry. Although this result is one of the worst
obtained by using only visual odometry, it is most appropriate for
the explanation of possible errors in the visual odometry. As can be
seen in Fig. 16, the trajectory obtained with the visual odometry
very accurately follows the reference trajectory at the beginning.
However, at some point the trajectory starts to deviate from the
reference trajectory due to incorrectly determined rigid transfor-
mation from the current to the key C.S. The problem is particularly
the inaccurately determined heading, which causes that positional
error quickly increases with time. This situation was due to the
very monotone texture of the floor on which the experiment was
performed. Thus, the algorithm KLT determined a lot of bad traces
and, consequently, RANSAC algorithm failed to identify the correct
model of rigid movement. Since at the same time this incorrect
determined rigid transformation was considered also for update of
the transformation from the key to the world C.S., all further
positions were incorrectly defined. However, as can be seen in
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Fig. 16, the visual odometry worked properly from the defect
onward, as the trajectory is almost as straight as the reference
trajectory. So, if the heading had been suitably corrected at the
moment when the wrong transformation was considered, the
trajectory would have followed the reference trajectory accurately.
The solution to the described problem lies in the fusion of visual
odometry with inertial navigation system as described below.

4.4. Determination of pedestrian movement through inertial
navigation system

In examining the inertial navigation system for pedestrians
based on the PDR technique, a digital compass was considered to
determine the heading and a pedometer was used for the purpose
of detecting steps and measuring their length. Using the motion
model which is described in the subsection of the fusion with the
Extended Kalman Filter, the trajectory shown in Fig. 17 was
obtained. The dots in the figure determine the position of the user
odometry and inertial navigation system on a smartphone, COMIND
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Fig. 19. Heading changes during the walk along the reference trajectory drawn in
Fig. 18.
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and the arrows determine the heading at individual detected steps.
As can be seen in Fig. 17, the trajectory follows the reference
trajectory accurately at the beginning, but then slightly deviates
due to not entirely accurate heading in the last part of the route.
The length of the steps is well determined by the model (27) as the
error of the total path length is equal to 2%. The error of the entire
path length does not only depend on inaccurate stride length but
also on whether the pedometer detects all the steps. At the stage of
experimentation, a false step detection was not observed, since the
smartphone was constantly fixed to the body. This prevents the
shaking of the device which could lead to incorrect step detection.

In the space where the inertial navigation system was tested,
especially in the last part of the path, a strong magnetic
disturbance was present. Due to this disturbance, the ordinary
digital compass, which is based only on magnetometer and
accelerometer, turned in a completely wrong direction. If the
arrows in Fig. 17 are examined closely, we can see that the compass
described in this article works well even in the presence of a strong
magnetic disturbance. Namely, the heading slightly deviates from
the reference trajectory only in the last part of the path. However,
the heading drifts away from the true value in any case if a long-
term magnetic disturbance is present. This can happen due to the
magnetometer, which returns incorrect values, or the gyroscope
drift.

4.5. Determination of pedestrian movement with fusion of visual
odometry and inertial navigation system

Both visual odometry and inertial navigation systems can
operate independently and in certain cases they offer completely
satisfactory results in determining the trajectory of a smartphone
user. With the purpose of taking a step forward, these two
relatively good localization approaches with pros and cons are
combined in this study to eliminate potential weaknesses (which
are mentioned in the analysis of the experimental results where
systems are used individually) and to get more reliable and
accurate results. In Fig 18, the results of the fusion of visual
odometry and inertial navigation system using the Extended
Kalman Filter are shown. If the obtained trajectory is compared
with the reference trajectory in Fig. 18, a very small deviation (of
about a few centimetres) can be seen. Furthermore, the fact that
Fig. 18. Determination of pedestrian trajectory with fusion of visual odometry and
inertial navigation system.
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the test user has difficulty following the drawn reference trajectory
accurately must be taken into account.

Fig. 19 shows the results of one of the first five experiments
(experiment number four) where three curves present the results
of determining the heading with visual odometry, digital compass
and fusion of both approaches. According to the reference
trajectory shown in Fig. 18, the heading values should be near to
0� at the beginning (approximately five steps from the starting
point) and near to 90� towards the end of the reference trajectory
(approximately the last eight steps). Although the pedestrian
cannot be entirely aligned with the reference trajectory during the
walk, the angles 0� for the first part and 90� for the second part of
reference trajectory present the best approximation to the true
heading.

To achieve as good results as they are shown in Fig. 18, the
heading and the distance to the starting point must be very
accurately determined. In order to show in details how heading
and distance errors can be bounded by the implementation of the
EKF based fusion of visual odometry and inertial navigation
system, ten experiments were carried out. The first five experi-
ments were made with the purpose of observing heading changes
during the walk along reference trajectory such as shown in Fig. 18
and the second five experiments were made to analyse distance
errors which occur by using the visual odometry, the inertial
navigation system and fusion of both approaches. During the
second five experiments, the pedestrian walked five times along
straight reference line with the length of 10.2 m.

To evaluate the accuracy of determined heading values
obtained with visual odometry, digital compass and fusion of
both approaches, the mean squared errors (MSE) of heading values
(which were modified to percentages) were computed for all five
experiments (Fig. 20). In each experiment, the first column
presents the MSE of heading obtained with visual odometry, the
second column the MSE of heading obtained with digital compass
and the third column the MSE of heading obtained with fusion of
both approaches. In the calculation of the mean squared error, the
heading values for the first five and last eight steps were
considered, since during pedestrian's turning to the left the true
heading values are not known.

In Fig. 20 can be seen that the MSE of heading values
determined with visual odometry are very big for all five
experiments since the visual odometry fails during the turn to
the left (this can be seen in Fig. 19) and consequently the
odometry and inertial navigation system on a smartphone, COMIND
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Fig. 20. The mean squared error of the heading (determined with VO, compass and
fusion of both approaches) modified to percentages for five experiments in which
the heading was changed as can be seen in Fig. 19.
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measurements of heading for the second part of the reference
trajectory are false. On the other hand, the MSE of heading values
determined with digital compass are very small for all five
experiments. This confirms that implemented digital compass can
very accurately determine the heading also when high-speed turns
occur. Since digital compass is included in the prediction part of the
EKF, the heading is suitably corrected when the visual odometry
fails and consequently the heading values obtained with fusion are
also very accurately determined, i.e. the MSE of heading values are
very small in all experiments.

In order to observe how the distances to the starting point
determined with visual odometry, pedometer and fusion of both
approaches are changed at each step, five experiments were
carried out in which a pedestrian walked along a 10.2 m straight
reference line. The results of one of the experiments (experiment
number four) which can be seen in Fig. 21 show that the distances
to the starting point are equal for all three approaches up to step
five. Namely, for the first five steps the calibration procedure is
performed in which constant K (which is a part of the model for the
step length estimation in the pedometer) is computed by using
Fig. 21. The distance to the starting point during the walk along a 10.2 m straight
reference line. 

Please cite this article in press as: S. Tomaži9c, I. Škrjanc, Fusion of visual 

(2015), http://dx.doi.org/10.1016/j.compind.2015.05.003
visual odometry measurements according to Eq. (28) and
consequently each step length is equal to the measurements
obtained by visual odometry. When the calibration procedure is
finished, the step length is estimated according to the model (27).
As can be seen in Fig. 21, the model very well describes the step
length as all three curves very similarly increase with the number
of steps.

For all five experiments and all three approaches, the relative
error of the walking distance was estimated as shown in Fig. 22.
The true distance (10.2 m) was known since the pedestrian walked
straight on from the known starting point to the known finish
point. The first columns of each experiment present relative errors
of distances obtained with visual odometry, the second columns
present relative errors obtained with pedometer and the third
columns present relative errors of estimated distances obtained
with fusion of both approaches. According to all relative errors
shown in Fig. 22, the approach with fusion of visual odometry and
pedometer manifests as the best solution in the long term, since
visual odometry can be very accurate only at determing the
walking distance in appropriate conditions (e.g. appropriate
lighting). But in some cases when it fails (e.g. experiment number
two) substantially worse results would be obtained as in the case of
considering the fusion approach. Therefore in general the
pedometer is not as accurate in determing the walking distance
as visual odometry, but it is very important for the achievement of
a long term accuracy. As can be seen in Fig. 22, all relative errors
computed for distances obtained with fusion are very small, i.e.
less than 3.5%.

In order not to slow down the operation of the visual odometry
due to the implementation of the fusion, the Extended Kalman
Filter is assigned to its thread, which can run on another processor
core than odometry (which occupies two processor cores) does.
The smartphone which has been used for the purpose of the testing
contains four processor cores, which means that three cores have
approximately the same burden. The fourth processor core is used
by the Android OS to run the user interface (UI) thread.

In order to demonstrate the performance of the described
localization system that runs in real time on a smartphone and in
doing so does not require additional external infrastructure (e.g.
WiFi network), an experiment in which a pedestrian walked the
closed-loop path (clockwise) with length of 27 m (Fig. 23), was
carried out. In addition to the six perpendicular turns which are on
the test route, there is also a strong magnetic disturbance in the
Fig. 22. The relative error of walking distance for five experiments.
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Fig. 23. Determination of pedestrian closed-loop trajectory with fusion of visual odometry and inertial navigation system.
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main part of the room (where the trajectory forms a loop), which
represents a major challenge for the digital compass. Ideally, the
circles (in Fig. 23) should overlap with the ground truth trajectory
but in reality this is not reasonably expected since even the
pedestrian cannot follow the line so accurately. As can be seen in
Fig. 23, the end point of the trajectory is away from the starting
point for only few centimetres. This result is above and beyond all
expectation for the dead reckoning technique.

5. Conclusion

In this paper the monocular visual odometry, inertial navigation
system and the fusion of both these localization approaches are
presented. The whole localization system was implemented on a
smartphone, where it was divided into three parts which were
carried out in separate threads. These three threads can run on
separate processor cores, enabling the execution of several parts of
the algorithms simultaneously. In this manner, the system can
process from 10 to 15 fps. This is sufficient speed (at normal
walking speed) for the visual odometry algorithm to operate as
expected. With the implementation of this localization system, a
new virtual sensor which measures incremental movements is
obtained on the smartphone. This virtual sensor can be used in
various applications on a smartphone (e.g. for guiding the blind) or
as an independent (or additional) sensor unit on mobile robots.

The experiments have shown that both visual odometry and
inertial navigation system can operate completely independently
from each other. The advantage of the visual odometry is in
accurately determining the relative positions, unless there are too
many sharp turns on the route. The advantage of the inertial
navigation system is mainly reflected in the possibility of
accurately measuring the absolute heading by using a digital
compass. The study showed that the problems of the visual
odometry lie in the monotone texture of the floor or in poor
lighting conditions.

In the inertial navigation system, the pedometer proved to be
very reliable, since in testing there were no false step detections.
Digital compass also works reliably if it is not exposed to long-term
magnetic disturbance. Otherwise, the heading drifts slightly away
from the true value, but this error can be eliminated by fusion. In
order to get an even more robust and accurate localization system,
the advantages of each mentioned approaches were combined by
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using the Extended Kalman Filter. This filter also eliminates most of
the errors that occur in an individual system.

All localization experiments were carried out with a pedestrian on
whom a smartphone was mounted. Instead of a wheel robot, a
pedestrian was chosen for doing experiments since this way of testing
represents a major challenge for the visual odometry. While walking,
the camera shakes much more than in the case when it is attached to a
robot. The results of the testing of the fusion of both systems have
shown a high accuracy in determining the relative position in indoor
spaces. An especially good result was achieved in the experiment
when the pedestrian walked the path in the shape of a closed loop.

The disadvantage of the visual odometry, as well as of the inertial
navigation system, is the inability to determine the absolute position
in space if the position of the starting point is not given.

Therefore, the localization system will be improved with one of
the global localization techniques (e.g. the positioning with WiFi or
Bluetooth signals) in the future. Since precise relative movements
between the global positions can be determined by the described
system, high-accuracy global positioning is expected from this
fusion. Using one of the global localization techniques can also
limit errors that occur due to dead reckoning approach in visual
odometry and inertial navigation system.
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